Université d'Ibn KHaldoun de Tiaret Département de physique

The exam answer key of Maths $1 \quad 1: 30 \mathrm{mn}: 01 / 14 / 2024$
Solution 1 a) We have

$$
f\left(\frac{1}{2}\right)=\frac{4}{5} \text { and } f(2)=\frac{4}{5} \ldots \ldots . \text { 0.5 } \boldsymbol{p t}
$$

b) Since $f\left(\frac{1}{2}\right)=f(2)$ but $2 \neq \frac{1}{2}$ then f is not injective 1 pt
2) We have $f^{\prime}(x)=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}$ and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=0$ then

We remark $g([-1,1])=[-1,1] \ldots . .0 .5 \boldsymbol{p t}$ then g is surjective O.25 $\boldsymbol{p t}$
Partie II a-The continuity at the point $x_{0}=0$, We have

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}-1=0=f(0) \ldots \text {.. o. } 5 \text { pt }
$$

then f is continuous at the point $x_{0}=0$
The diffentiabilty at the point $x_{0}=0$, we have
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{e^{x}-1}{x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{2}}-\frac{1}{x}=\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{0}{0} \quad$ I.F..... 1 pt
we use the hospital rule we have $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\frac{1}{2} \ldots$.. O. $5 \boldsymbol{p} \boldsymbol{t}$ b - we have $x \mapsto \frac{e^{x}-1}{x}-1$ is diffentiable on $]-\infty, 0[$ and $] 0,+\infty[$ because it is a composite diffentiable functions on $]-\infty, 0[$ and $] 0,+\infty[$, and it is differentiable at the point $x_{0}=0$, hence f is differentiable on $\mathbb{R} \ldots . . \boldsymbol{O}, 5 \boldsymbol{p t}$
c - The function $x \longmapsto \frac{e^{x}-1}{x}$ is continuous for all values of $\left.\left.x \in\right] 0 ; 1\right]$ and note that

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 \text { and } f(1)=e-1 \ldots . \boldsymbol{0}, 5 \boldsymbol{p} t
$$

and 1.5 is between 1 and $e-1$
Using the Intermediate Value Theorem, the equation $\frac{e^{x}-1}{x}=1.5$ have at least a solution in the interval $] 0 ; 1[\ldots .0,5$ pt

Solution 2 Partie I

1) Let us show that U is a vector subspace of \mathbb{R}^{3}

We have
$0_{\mathbb{R}^{3}}=(0,0,0) \in U$ since $\frac{0+0}{2}=0$ is verify then $U \neq \varnothing$.........25pt
Let $u(x, y, z)$ and $v\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in U$: Show that montrons que $u+v \in U$?
we have

$$
\begin{align*}
u(x, y, z) & \in U \text { then } \frac{x+y}{2}=z \ldots .(1) \ldots . \text { o.25pt } \\
\text { and } v(x, y, z) & \in U \text { then } \frac{x^{\prime}+y^{\prime}}{2}=z^{\prime} \ldots .(2) \tag{2}
\end{align*}
$$

We have $u+v\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in U$, since

$$
\frac{x+x^{\prime}}{2}+\frac{y+y^{\prime}}{2}=z+z^{\prime} \ldots .0 .5 p t
$$

then $u+v \in U$

Let $u(x, y, z) \in U$ and $\alpha \in \mathbb{R}:$ Show that $\alpha u \in U$? we have

$$
\begin{aligned}
u(x, y, z) & \in U \text { then } \frac{x+y}{2}=z \ldots . .(1) \ldots . \text {.O.25 } \boldsymbol{p t} \\
\text { then }^{\prime} \frac{\alpha x+\alpha y}{2} & =\alpha z \ldots .(2) \ldots 0.5 \mathrm{pt}
\end{aligned}
$$

then $\alpha u \in U$
Finaly U is a vector subspace of \mathbb{R}^{3}
2) The basis of U,

$$
\begin{aligned}
U & =\left\{(x, y, z) \in \mathbb{R}^{3}, \frac{x+y}{2}=z\right\} \\
& =\left\{(x, y, z) \in \mathbb{R}^{3}, x=2 z-y\right\} \\
& =\{(2 z-y, y, z) / y, z \in \mathbb{R}\}=\{(-y, y, 0)+(2 z, 0, z) / y, z \in \mathbb{R}\} \ldots \text {....25 pt } \\
& =\{y(-1,1,0)+z(2,0,1) / y, z \in \mathbb{R}\} \ldots \text {..O.25pt }
\end{aligned}
$$

the set $\{u(-1,1,0), v(2,0,1)\}$ is a basis U. Show that $\{u, v\}$ is independent Let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ We have
$\lambda_{1} u+\lambda_{2} v=0_{\mathbb{R}^{3}} \Longrightarrow\left\{\begin{array}{r}-\lambda_{1}+2 \lambda_{2}=0 \quad \ldots .(1) \\ \lambda_{1}+0 . \lambda_{2}=0 \ldots .(2) \\ 0 . \lambda_{1}+\lambda_{2}=0 \quad \ldots \ldots .(3)\end{array} \Longrightarrow \lambda_{1}=0 \quad\right.$ and $\quad \lambda_{2}=0 \ldots . \boldsymbol{0 . 5} \boldsymbol{p} \boldsymbol{t}$
then $\{u, v\}$ is abasis of U
Partie II
Let us show that f is a linear map

Let $u(x, y), v\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ We have

$$
\begin{aligned}
f(u+v) & =f\left(x+x^{\prime}, y+y^{\prime}\right)=\left(\frac{2}{5}\left(x+x^{\prime}\right)-\frac{1}{3}\left(y+y^{\prime}\right), x+x^{\prime}+\frac{1}{3}\left(y+y^{\prime}\right)\right) \ldots \text {....25pt } \\
& =\left(\frac{2}{5} x+\frac{2}{5} x^{\prime}-\frac{1}{3} y-\frac{1}{3} y^{\prime}, x+x^{\prime}+\frac{1}{3} y+\frac{1}{3} y^{\prime}\right) \\
& =\left(\frac{2}{5} x-\frac{1}{3} y+\frac{2}{5} x^{\prime}-\frac{1}{3} y^{\prime}, x+\frac{1}{3} y+x^{\prime}+\frac{1}{3} y^{\prime}\right) \\
& =\left(\frac{2}{5} x-\frac{1}{3} y, x+\frac{1}{3} y\right)+\left(\frac{2}{5} x^{\prime}-\frac{1}{3} y^{\prime}, x^{\prime}+\frac{1}{3} y^{\prime}\right) \\
& =f(x, y)+f\left(x^{\prime}, y^{\prime}\right) \\
& =f(u)+f(v) \ldots \text { O.25pt }
\end{aligned}
$$

Let $\alpha \in \mathbb{R}, u(x, y) \in \mathbb{R}^{2}$ We have

$$
\begin{aligned}
f(\alpha u) & =f(\alpha x, \alpha y)=\left(\frac{2}{5} \alpha x-\frac{1}{3} y, \alpha x+-\frac{1}{3} \alpha y\right) \ldots . \text { o.25pt } \\
& =\alpha\left(\frac{2}{5} x-\frac{1}{3} y, x+\frac{1}{3} y\right) \\
& =\alpha f(x, y) \ldots . \text { O.25pt } \\
& =\alpha f(u)
\end{aligned}
$$

then f is a linear map
2) a) By definition of Kernel of f

$$
\begin{aligned}
\operatorname{ker} f & =\left\{(x, y) \in \mathbb{R}^{2} / f(x, y)=0_{\mathbb{R}^{2}}\right\} \ldots \text {....25pt } \\
& =\left\{(x, y) \in \mathbb{R}^{2} /\left(\frac{2}{5} x-\frac{1}{3} y, x+\frac{1}{3} y\right)=(0,0)\right\} \text {...O.25pt }
\end{aligned}
$$

then

$$
\left\{\begin{array}{c}
\frac{2}{5} x-\frac{1}{3} y=0 \ldots \ldots .(1) \\
x+\frac{1}{3} y=0 \ldots . .(2)
\end{array} \Rightarrow(1)+(2) \Rightarrow x=0 \quad \text { et } y=0 \ldots . \boldsymbol{0 . 2 5 p t}\right.
$$

then

$$
\operatorname{ker} f=\left\{(0,0)=0_{\mathbb{R}^{2}}\right\} \ldots . \text { o.25pt }
$$

b) since $\operatorname{ker} f=\left\{0_{\mathbb{R}^{2}}\right\}$ then g is injective....0.25pt

We have according to the dimension theorem
$\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{Im} f=\operatorname{dim} \mathbb{R}^{2} \Rightarrow \operatorname{dim} \operatorname{Im} f=\operatorname{dim} \mathbb{R}^{2}$ since $\operatorname{dim} \operatorname{ker} f=0$.... $\boldsymbol{\operatorname { O s p }} \boldsymbol{p}$
f is surjective....O.25pt

Solution 3 We have

$$
\forall x, y \in \mathbb{R}, x \Re y \Longleftrightarrow \cos ^{2} x+\sin ^{2} y=1
$$

1) Let us show that \Re is an equivelente relation
\Re is reflexive indeed, for all $x \in \mathbb{R}$, we have

$$
x \Re x \Longleftrightarrow \cos ^{2} x+\sin ^{2} x \text { is always true....0.5pt }
$$

\Re is symmetricre, indeed, for all $x, y \in \mathbb{R}$, we have

$$
x \Re y \Longleftrightarrow x \Re x \Longleftrightarrow \cos ^{2} x+\sin ^{2} y=1 \ldots . \boldsymbol{0 . 5 p t}
$$

then remplcing $\cos ^{2} x$ by $1-\sin x^{2}$ and $\sin ^{2} y$ by $1-\cos y^{2}$

$$
1-\sin ^{2} x+1-\cos ^{2} y=1 \ldots \text { the proof is complet.0.5pt }
$$

\Re est transitive car , on a pour tout x, y et $z \in \mathbb{R}$,
if $\quad x \Re y \Longleftrightarrow \cos ^{2} x+\sin ^{2} y=1 \ldots \ldots$. (1) and $\quad y \Re z \Longleftrightarrow \cos ^{2} y+\sin ^{2} z=1 \ldots \ldots$.
additionel (1) and (2)

$$
\cos ^{2} x+\sin ^{2} y+\cos ^{2} y+\sin ^{2} z=2 \ldots \boldsymbol{0} . \mathbf{5} \boldsymbol{p} \boldsymbol{t}
$$

then

$$
\cos ^{2} x+1+\sin ^{2} z=2
$$

the proof is complet, then $x \Re z \ldots . . \boldsymbol{0 . 5 p t}$
Since \Re is symmetric, reflexive and transitive then \Re it is an eauivalence relation..... $\mathbf{0 . 5}$ $p t$
2) $\frac{\dot{\pi}}{2}$ class equivalence of $\frac{\pi}{2} \in \mathbb{R}$

$$
\begin{aligned}
\frac{\dot{\pi}}{2} & =\left\{x \in \mathbb{R} / x \Re \frac{\pi}{2}\right\}=\left\{x \in \mathbb{R} / \cos ^{2} x+\sin ^{2} \frac{\pi}{2}=1\right\} \ldots \text {... } \mathbf{p} \boldsymbol{p} \boldsymbol{t} \\
& =\left\{x=\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\} \ldots \text {...5 pt }
\end{aligned}
$$

Solution 4 1- The kernel ker f is a subspace of U because

$$
u, v \in \operatorname{ker} f \text { and show that } u+v \in \operatorname{ker} f
$$

we have

$$
u \in \operatorname{ker} f \text { then } f(u)=0_{V} \text { and } u \in \operatorname{ker} f \text { then } f(v)=0_{V} \ldots \boldsymbol{0} .5 \boldsymbol{p t}
$$

since f is linear we have

$$
f(u+v)=f(u)+f(v)=0_{v} \ldots \boldsymbol{O} .5 p t
$$

then $u+v \in \operatorname{ker} f$
and symelary

$$
u \in \operatorname{ker} f \text { and } \alpha \in \mathbb{k} \text { we ave } \alpha u \in \operatorname{ker} f \ldots \boldsymbol{0} \text {..5pt }
$$

indeed f is linear we have

$$
f(\alpha u)=\alpha f(u)=0_{v} \ldots \boldsymbol{0 . 5 p t}
$$

2- Let us show that if g and h are linear then gof is linear Let $u, v \in V$. as soon as f and g are linear then

$$
\begin{aligned}
(g \circ f)(u+v) & =g(f(u+v))=g f((u)+f(v))= \\
& =g(f(u))+g(f(v))=(g \circ f)(u)+(g \circ f)(v) \ldots .1 p t
\end{aligned}
$$

and for $u \in V, \lambda \in \mathbb{k}$, since f and g are linears, we have

$$
\begin{aligned}
(g \circ f)(\lambda u) & =g(f(\lambda u))=g(\lambda f(u))= \\
& =\lambda g(f(u))=\lambda(g \circ f)(u) \ldots . \boldsymbol{0 . 5 p t}
\end{aligned}
$$

3- f is surjective i; $f(U)=V$ and g is surjective $g(V)=W$...0.5pt Let us show that gof is surjective
we have

$$
g o f(U)=g(v)=W \ldots \mathbf{1} \boldsymbol{p} \boldsymbol{t}
$$

then gof is surjective.

